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NEW TIGHT BOUNDS FOR SGD WITHOUT VARIANCE

ASSUMPTION: A COMPUTER-AIDED LYAPUNOV ANALYSIS

DANIEL CORTILD, LUCAS KETELS, JUAN PEYPOUQUET, AND GUILLAUME GARRIGOS

The analysis of Stochastic Gradient Descent (SGD) often relies on making some assump-

tion on the variance of the stochastic gradients, which is usually not satisfied or difficult

to verify in practice. This work [1] contributes to a recent line of works which attempt to

provide guarantees without making any variance assumption, leveraging only the (strong)

convexity and smoothness of the loss functions. In this context, we prove new theoretical

bounds derived from the monotonicity of a simple Lyapunov energy, improving the current

state-of-the-art and extending their validity to larger step-sizes. Our theoretical analysis is

backed by a Performance Estimation Problem analysis [2], which allows us to claim that,

empirically, the bias term in our bounds is tight within our framework.
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